Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jones, Julia A (Ed.)Abstract Studies of community assembly often explore the role of niche selection in limiting the diversity of functional traits (underdispersion) or increasing the diversity of functional traits (overdispersion) within local communities. While these patterns have primarily been explored with morphological functional traits related to environmental tolerances and resource acquisition, plant metabolomics may provide an additional functional dimension of community assembly to expand our understanding of how niche selection changes along environmental gradients. Here, we examine how the functional diversity of leaf secondary metabolites and traditional morphological plant traits changes along local environmental gradients in three temperate forest ecosystems across North America. Specifically, we asked whether co‐occurring tree species exhibit local‐scale over‐ or underdispersion of metabolomic and morphological traits, and whether differences in trait dispersion among local communities are associated with environmental gradients of soil resources and topography. Across tree species, we find that most metabolomic traits are not correlated with morphological traits, adding a unique dimension to functional trait space. Within forest plots, metabolomic traits tended to be overdispersed while morphological traits tended to be underdispersed. Additionally, local environmental gradients had site‐specific effects on metabolomic and morphological trait dispersion patterns. Taken together, these results show that different suites of traits can result in contrasting patterns of functional diversity along environmental gradients and suggest that multiple community assembly mechanisms operate simultaneously to structure functional diversity in temperate forest ecosystems.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.more » « less
An official website of the United States government
